文本细粒度情感分析研究综述Review of Fine-Grained Sentiment Analysis Based on Text
谭翠萍;
摘要(Abstract):
采用文献调研方法,从不同粒度层次的情感分析视角,阐述细粒度情感分析对整个情感分析方法的影响与促进,并对细粒度文本情感分析的最新任务和技术方法进行了归纳总结,最后对该领域未来研究趋势进行了研判。此文相关研究成果可为后续研究提供借鉴与参考。
关键词(KeyWords): 细粒度;方面级情感分析;文本分析
基金项目(Foundation):
作者(Authors): 谭翠萍;
DOI: 10.16603/j.issn1002-1027.2022.04.011
参考文献(References):
- 1 周建,刘炎宝,刘佳佳.情感分析研究的知识结构及热点前沿探析[J].情报学报,2020,39(1):111-124.
- 2 Messaoudi C,Guessoum Z,Ben Romdhane L.Opinion mining in online social media:a survey[J].Social Network Analysis and Mining,2022,12(1):1-18.
- 3 Araujo A F,Golo M P S,Marcacini R M.Opinion mining for app reviews:an analysis of textual representation and predictive models[J].Automated Software Engineering,2022,29(1):1-30.
- 4 唐晓波,刘广超.细粒度情感分析研究综述[J].图书情报工作,2017,61(5):132-140.
- 5 Liu K,Xu L H.Sentiment analysis:mining opinions,sentiments,and emotions[J].Computational Linguistics,2016(3):595-598.
- 6 Amplayo R K,Song M.An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews[J].Data Knowledge Engineering,2017,110:54-67.
- 7 王春东,张卉,莫秀良.微博情感分析综述[J].计算机工程与科学,2022,44(1):165-175.
- 8 Stuart K D,Maciej M.Intelligent opinion mining and sentiment analysis using artificial neural networks[M].International Conference on Neural Information Processing,2015.
- 9 刘寒.基于用户评论的情感分析研究与实现[D].北京:北京邮电大学,2021.
- 10 刘兵.情感分析挖掘观点、情感和情绪[M].北京:机械工业出版社.2021:37-158.
- 11 王婷,杨文忠.文本情感分析方法研究综述[J].计算机工程与应用,2021,57(12):11-24.
- 12 Hao F,Ren Y F,Wu S Q.Latent target-opinion as prior for document-level sentiment classification:a variational approach from fine-grained perspective[M].Proceedings of the World Wide Web Conference 2021.2021.
- 13 Wu Z H,Gao J B,Li Q S.Make aspect-based sentiment classification go further:step into the long-document-level[J].Applied Intelligence,2021,52(8):8428-8447.
- 14 Wei L W,Hu D,Zhou W.Hierarchical interaction networks with rethinking mechanism for document-level sentiment analysis[C].Lecture Notes in Artificial Intelligence,2021:633-649.
- 15 Liu B.Sentiment analysis and subjectivity[J].Handbook of Nature Language Processing,2010(1):1-38.
- 16 Riloff E,Wiebe J.Learning extraction patterns for subjective expressions[C].EMNLP,2003:105-112.
- 17 Sangeetha K,Prabha D.Understand students feedback using bi-Integrated CRF model based target extraction[J].Computer Systems Science and Engineering,2022,40(2):735-747.
- 18 Yadav A,Vishwakarma D K.A Language-independent network to analyze the impact of COVID-19 on the world via sentiment analysis[J].ACM Transactions on Internet Technology.2022,22(1):1-30.
- 19 Wang P,Li J N,Hou J N.S2SAN:a sentence-to-sentence attention network for sentiment analysis of online reviews[J].Decision Support Systems,2021,149:1-12.
- 20 Es-Sabery F,Hair A,Qadir J .Sentence-level classification using parallel fuzzy deep learning classifier[J].IEEE Access,2021,9:17943-17985.
- 21 Zhang T,Gong X R,Chen C L P.BMT-Net:Broad multitask transformer network for sentiment analysis[J].IEEE Transactions on Cybernetics,2021,52(7):6232 - 6243.
- 22 Pontiki M,Galanis D,Papageorgiou H,et al.SemEval-2016 task 5:aspect based sentiment analysis[C].The 10th International Workshop on Semantic Evaluation,2016:19-30.
- 23 Yan H,Dai J,Ji T,et al.A unified generative framework for aspect-based sentiment analysis[C].The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:2416-2429.
- 24 Peng H Y,Xu L,Bing L D,et al.Knowing what,how and why:a near complete solution for aspect-based sentiment analysis[C].Thirty-fourth Aaai Conference on Artificial Intelligence,the Thirty-second Innovative Applications of Artificial Intelligence Conference and the Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,2020:8600-8607.
- 25 Ramaswamy S L,Chinnappan J.RecogNet-LSTM plus CNN:a hybrid network with attention mechanism for aspect categorization and sentiment classification[J].Journal of Intelligent Information Systems,2022,58(2):379-404.
- 26 Jian S Y B,Nayak T,Majumder N,et al.Aspect sentiment triplet extraction using reinforcement learning[C].The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021.arXiv:2108.06107v1[cs.CL].
- 27 Zhang W X,Li X,Deng Y,et al.Towards generative aspect-based sentiment analysis[C].The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,2021:504-510.
- 28 Xu L,Chia Y K,Bing L D.Learning span-level interactions for aspect sentiment triplet extraction[C].The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,2021:4755-4766.
- 29 Chen S W,Wang Y,Liu J,et al.Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C].Thirty-third Conference on Innovative Applications of Artificial Intelligence and the Eleventh Symposium on Educational Advances in Artificial Intelligence,2021:12666-12674.
- 30 张刚强,刘群,纪良浩.基于序贯三支决策的多粒度情感分类方法[J].计算机科学,2018,45(12):153-159.
- 31 Gao H C,Guo C K,Bai G D,et al.Sharing runtime permission issues for developers based on similar-app review mining[J].Journal of Systems and Software,2022,184:1-15.
- 32 Sun J H,Han P,Cheng Z,et al.Transformer based multi-grained attention network for aspect-based sentiment analysis[J].IEEE Access,2020,8:211152-211163.
- 33 Tang F L,Fu L Y,Yao B,et al.Aspect based fine-grained sentiment analysis for online reviews[J].Information Sciences,2019,488:190-204.
- 34 Talafha B,Al-Ayyoub M,Abuammar A,et al.Outperforming state-of-the-art systems for aspect-based sentiment analysis[C].16th IEEE/ACS International Conference on Computer Systems and Applications (AICCSA),2019:1-5.
- 35 Gan C Q,Wang L,Zhang Z F.Multi-entity sentiment analysis using Self-Attention based hierarchical dilated convolutional neural network[J].Future Generation Computer Systems-the International Journal of Escience,2020,112:116-125.
- 36 ChenY Z,Kong L Y,Wang Y,et al.Multi-grained attention representation with ALBERT for aspect-level sentiment classification[J].IEEE Access,2021,9:106703-106713.
- 37 张越兵,苗夺谦,张志飞.基于三支决策的多粒度文本情感分类模型[J].计算机科学,2017,44(12):188-193,215.
- 38 王琴,刘盾.结合集成学习的序贯三支情感分类方法研究[J].计算机工程与应用,2021,57(23):211-218.
- 39 杨新,刘盾,李楸柯,等.基于时空多粒度的序贯三支情感分析[J].模式识别与人工智能,2020,33(8):743-752.
- 40 Tubishat M,Idris N,Abushariah M A M.Implicit aspect extraction in sentiment analysis:review,taxonomy,oppportunities,and open challenges[J].Information Processing & Management,2018,54(4):545-563.
- 41 Ganganwar V,Rajalakshmi R.Implicit aspect extraction for sentiment analysis:a survey of recent approaches[C].Procedia Computer Science,2019,165:485-491.
- 42 Mir J,Mahmood A,Khatoon S.Multi-level knowledge engineering approach for mapping implicit aspects to explicit aspects[J].CMC-Computers Materials & Continua,2022,70(2):3491-3509.
- 43 Zhang J,Lu X C,Liu D.Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews[J].Electronic Commerce Research and Applications,2021,49:1-14.
- 44 Rana T A,Cheah Y N,Rana T.Multi-level knowledge-based approach for implicit aspect identification[J].Applied Intelligence,2020,50(12):4616-4630.
- 45 Xu Q N,Zhu L,Dai T,et al.Non-negative matrix factorization for implicit aspect identification[J].Journal of Ambient Intelligence and Humanized Computing,2020,11(7):2683-2699.
- 46 Sun K,Zhang R,Mensah S,et al.Aspect-level sentiment analysis via convolution over dependency tree[C].The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),2019:5683-5692.
- 47 Xu K H,Zhao H,Liu T W.Aspect-Specific heterogeneous graph convolutional network for aspect-based sentiment classification[J].IEEE Access,2020,8:139346-139355.
- 48 Zhang C,Li Q,Song D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[C].The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),2019:4560-4570.
- 49 Yang H,Zeng B Q,Xu M Y,et al.Back to reality:leveraging pattern-driven modeling to enable affordable sentiment dependency learning[C].Association for the Advancement of Artificial Intelligence,2021.arXiv:2110.08604v1 [cs.CL].
- 50 Sankar H,Subramaniyaswamy V.Investigating sentiment analysis using machine learning approach[C].International Conference on Intelligent Sustainable Systems,2017:87-92.
- 51 Do H H,Prasad P W C,Maag A,et al.Deep learning for aspect-based sentiment analysis:a comparative review[J].Expert Systems with Applications,2019,118:272-299.
- 52 Birjali M,Kasri M,Beni-Hssane A.A comprehensive survey on sentiment analysis:approaches,challenges and trends[J].Knowledge-based Systems,2021,226:107-134.
- 53 洪巍,李敏.文本情感分析方法研究综述[J].计算机工程与科学,2019,41(4):750-757.
- 54 Tang F L,Fu L Y,Yao B,et al.Aspect based fine-grained sentiment analysis for online reviews[J].Information Sciences,2019,488:190-204.
- 55 Yuan J H,Wu Y,Lu X,et al.Recent advances in deep learning based sentiment analysis[J].Science China-technological Sciences,2020,63(10):1947-1970.
- 56 Liang B,Su H,Gui L,et al.Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J].Knowledge-based Systems,2022,235:1-11.
- 57 Xu G T,Liu P Y,Zhu Z F,et al.Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention[J].Applied Sciences-basel,2021,11(8):1-14.
- 58 Zhu X F,Zhu L,Guo J F,et al.GL-GCN:global and local dependency guided graph convolutional networks for aspect-based sentiment classification[J].Expert Systems with Applications,2021,186:1-11.
- 59 Wang Y Y,Chen Q,Ahmed M,et al.Joint inference for aspect-level sentiment analysis by deep neural networks and linguistic hints[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(5):2002-2014.
- 60 Zhang Y X,Rao Z Y.Deep neural networks with pre-train model BERT for aspect-level sentiments classification[C].Proceedings of 2020 Ieee 5th Information Technology and Mechatronics Engineering Conference (ITOEC2020),2020:923-927.
- 61 Wang X Y,Li F,Zhang Z Q,et al.A unified position-aware convolutional neural network for aspect based sentiment analysis[J].Neurocomputing,2021,450:91-103.
- 62 Bai Q C,Zhou J,He L.PG-RNN:using position-gated recurrent neural networks for aspect-based sentiment classification[J].Journal of Supercomputing,2022,78(3):4073-4094.
- 63 张严,李天瑞.面向评论的方面级情感分析综述[J].计算机科学,2020,47(6):194-200.
- 64 杨书新,张楠.融合情感词典与上下文语言模型的文本情感分析[J].计算机应用,2021,41(10):2829-2834.
- 65 Aboelela E M,Gad W,Ismail R.The impact of semantics on aspect level opinion mining[J].Peerj Computer Science,2021:1-22.
- 66 Chen F,Huang Y F.Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews[J].Neurocomputing,2019,368:51-58.
- 67 Jain P K,Quamer W,Saravanan V,et al.Employing BERT-DCNN with sentic knowledge base for social media sentiment analysis[J].Journal of Ambient Intelligence and Humanized Computing.2022:1-13.
- 68 Deng D,Jing L P,Yu J,et al.Sentiment lexicon construction with hierarchical supervision topic model[J].IEEE-ACM Transactions on Audio Speech and Language Processing,2019,27(4):704-718.
- 69 张瑾,段利国,李爱萍,等.基于注意力与门控机制相结合的细粒度情感分析[J].计算机科学,2021,48(8):226-233.
- 70 张志刚.网络新闻评论情感分析系统的研究与实现[D].沈阳:辽宁大学,2018.
- 71 王娜娜.评论文本情感倾向性分析技术研究[D].北京:北京交通大学,2017.
- 72 Kirigin T B,Babic S B,Perak B.Lexical sense labeling and sentiment potential analysis using corpus-based dependency graph[J].Mathematics,2021,9(12):1-12.
- 73 Abdalgader K,Al Shibli A.Context expansion approach for graph-based word sense disambiguation[J].Expert Systems with Applications,2021,168:1-15.
- 74 钟佳娃,刘巍,王思丽,等.文本情感分析方法及应用综述[J].数据分析与知识发现,2021,5(6):1-13.
- 75 Tao J,Zhou L N.A weakly supervised WordNet-guided deep learning approach to extracting aspect terms from online reviews[J].Acm Transactions on Management Information Systems,2020,11(3):1-22.
- 76 叶霞,曹军博,许飞翔,等.中文领域情感词典自适应学习方法[J].计算机工程与设计,2020,41(8):2231-2237.
- 77 Liu R,Shi Y,Ji C,et al.A survey of sentiment analysis based on transfer learning[J].IEEE Access.2019,7:85401-85412.
- 78 孙佳慧,韩萍,程争.基于知识迁移和注意力融合的方面级文本情感分析[J].信号处理,2021,37(8):1384-1391.
- 79 Oro E,Ruffolo M,Visalli F.Reducing the need for manual annotated datasets in aspect sentiment classification by transfer learning and weak-supervision[C].Agents and Artificial Intelligence,ICAART 2020,2021,12613:445-464.
- 80 Tao J,Fang X.Toward multi-label sentiment analysis:a transfer learning based approach[J].Journal of Big Data,2020,7(1):1-26.
- 81 Bensoltane R,Zaki T.Towards Arabic aspect-based sentiment analysis:a transfer learning-based approach[J].Social Network Analysis and Mining,2022,12(1):1-16.
- 82 Parameswaran P,Trotman A,Liesaputra V,et al.Detecting the target of sarcasm is hard:Really?[J].Information Processing & Management,2021,58(4):1-22.
- 83 Toledo-Gómez I,Valtierra-Romero E,Guzmán-Arenas A,et al.Tool for identification and resolution of direct anaphora in Spanish[J].Journal of Applied Research and Technology,2014,12:14-40.
- 84 Ren L,Xu B,Lin H,et al.Sarcasm detection with sentiment semantics enhanced multi-level memory network[J].Neurocomputing,2020,401:320-326.
- 85 Sukthanker R,Poria S,Cambria E,et al.Anaphora and coreference resolution:a review[J].Information Fusion,2020,59:139-162.
- 86 Deborah L J,Karthika V,Baskaran R,et al.Enhanced anaphora resolution algorithm facilitating ontology construction[C].Communications in Computer and Information Science,2011,198:526-535.
- 87 Dessi D,Diego R R.LexTex:a framework to generate lexicons using WordNet word senses in domain specific categories[J].Journal of Intelligent Information Systems,2021:1-24.